### The remarkable Hilbert space H^2 (Part II – multivariable operator theory and model theory)

#### by Orr Shalit

This post is the second post in the series of posts on the d–shift space, a.k.a. the Drury–Arveson space, a.k.a. (see this previous post about the space ).

#### 1. Model theory

One of the ways in which one can understand general linear operators on a finite dimensional space is by the **Jordan normal form** of a matrix. Recall that every linear operator on a finite dimensional (complex) space can be decomposed as the direct sum , where are **Jordan blocks**, that is is made up from simple, understandable building blocks. This is a ubiquitous strategy in mathematics: to decompose a general object into tractable, well–understood pieces (for example, every finitely generated abelian group is the direct sum of cyclic groups, etc., etc.).

When it comes to operators of general type on infinite dimensional spaces, no such decomposition is known to mankind (if it was, then mankind would probably have an answer to the invariant subspace problem). A completely different strategy that is used in the infinite dimensional setting is the following: instead of trying to decompose an operator into **smaller** and better understood pieces, what we do is exhibit the operator as a piece of a **bigger** and better understood operator. The various ways in which strategy has been implemented go under the name **model theory**.

How can something complicated be a piece of something simple? How can this help us understand the complicated thing? A good example (from a different field) to have in mind which explains the philosophy behind this scheme and answers both of these questions, is Whitney’s theorem: *every smooth manifold can be embedded in Euclidean space. *

Here is one way in which this works. Let denote the operator of multiplication by the coordinate function on :

is called the **shift**. Let be a fixed infinite dimensional and separable Hilbert space (say ). Consider the Hilbert space . This space can be identified as direct sum with itself times. Now consider defined by . This can be identified with the direct sum of with itself times. Then we have the following theorem.

**Theorem 1:** *Let ( separable) with . Then can be identified with a subspace of which is invariant under such that . *

(Of course, if one prefers, one may replace with and then one gets ). Stated in an almost equivalent way, the assertion is that

for all . We say that the *shift is a universal model for contractions*.

Here is a consequence of the fact that shift is a universal model:

**Theorem 2 (von Neumann’s inequality):** *Let , . Then for any polynomial*

**Proof: **This follows at once once we know that for any polynomial . But is a consequence of being a subspace of .

#### 2. The d-shift as a universal model for commuting row contractions

We now come to **multivariable operator theory**. Multivariable operator theory is concerned with the analysis of tuples of operators, rather than single operators. That is, one has a d–tuple and one tries to understand their *simultaneaus *action on the space and how they relate with each other.

To see why this is more complicated, consider a pair of operators on a finite dimensional space. For each separate operator we can find a basis with respect to which it is in Jordan form, and this gives a relatively simple description of what does to the space. In particular, given a polynomial it is not hard to compute respect to the Jordanizing basis.

However, in general (even if and commute) one cannot choose a Jordanizing basis that works for both operators at once. In particular, it is difficult to compute for a polynomial in two variables.

There is a model theory for d–tuples of commuting operators (there is also a model theory for non-commuting tuples which we shall not discuss. See, for example, the work of Gelu Popescu). As above, we will need to impose some norm condition. For a d–tuple let us denote by the norm of the operator given by

Let be as in Theorem 1. Let denote the operator of multiplication by the th coordinate function in :

We denote and refer to this tuple as the d–shift.

**Theorem 3: ***Let be a d–tuple of commuting operators on such that . Then can be identified with a subspace of such that *

*. *

Again, as a consequence, one has

for every polynomial .

Thus, we say that the *d–shift is a universal model for commuting row contractions*.

As a corollary we obtain the following generalization of von Neumann’s inequality.

**Theorem 4 (Drury’s inequality): ***Let be a commuting tuple of operators such that . Then for any polynomial *

Note the difference from von Neumann’s inequality: we do not claim that , and indeed, this inequality fails for . But the fact that we can identify a (simple) tuple of operators on which the maximum norm is obtained for any polynomial is quite remarkable.

#### 3. Some words of warning

Theorem 1 and Theorem 3 (the “dilation theorems”) are nontrivial and important theorems, but one should be warned that there is a limit to what they can tell us. This is because the invariant subspace lattice of is very complicated. In fact, it is at least as complicated as the invariant subspace lattice of any operator!

Theorem 1 tells us that if we can completely understand the invariant subspace lattice of then we can solve the invariant subspace problem; indeed, by Theorem 1 the invariant subspace problem is equivalent to the question whether or not has a minimal infinite dimensional invariant subspace (or equivalently, whether has a maximal infinite co–dimensional invariant subspace). No surprise, this problem turns out to be just as hard.

However, some invariant subspace theorems were obtained using model theory. For example, there are operators for which is a model, where is a *finite* dimensional Hilbert space. This case is tractable, and one can show that the operator has no maximal infinite co–dimensional invariant subspaces.

[…] the colloquium talk I was supposed to give. The first two parts are available here and here. In this post I will discuss three open problems that I have been thinking about, which are […]

[…] wrote a series of blog posts on Drury-Arveson space: one, two and three. Actually, at the time I wrote those posts I already knew that I was going to write this […]

[…] spaces, but I like to view in the Drury-Arveson space . See this old post (mostly Section 1) and this old post (mostly Sections 2 and 3) where I already discussed this space. In this old post (Section 1) I […]

[…] disc is replaced by the Drury-Arveson space on the unit ball in (see these two older posts: one, two), or where the Bergman space on the unit disc is replaced by the Bergman space on the unit […]