Seminar talk by Pandey – Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball

In our next Operator Algebras/Operator Theory Seminar, Satish Pandey will present our recently published online paper (together with Danny Ofek and myself) “Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball” (arxiv version).

Time: 15:30-16:30

Date: May 6th, 2021

Title: Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball

Abstract:

We study the relationships between a reproducing kernel Hilbert space, its multiplier algebra, and the geometry of the point set on which they live. We introduce a variant of the Banach-Mazur distance suited for measuring the distance between reproducing kernel Hilbert spaces, that quantifies how far two spaces are from being isometrically isomorphic as reproducing kernel Hilbert spaces. We introduce an analogous distance for multiplier algebras, that quantifies how far two algebras are from being completely isometrically isomorphic. We show that, in the setting of finite dimensional quotients of the Drury-Arveson space, two spaces are “close” to one another if and only if their multiplier algebras are “close”, and that this happens if and only if one of the underlying point sets is close to an image of the other under a biholomorphic automorphism of the unit ball. These equivalences are obtained as corollaries of quantitative estimates that we prove.

This is joint work with Danny Ofek and Orr Shalit.

If you are interested in the zoom link, let me know.