Noncommutative Analysis

Category: academia

Babies welcome in my class!

Re this news item (or here, in English):

This is so wrong.

Mothers to very young babies must be given the choice to bring their babies with them to their workplace, or to the college where they study. Obviously, if the baby starts screaming, they should step outside until the baby is quiet again.

What other possibilities are there? Not study? That’s one solution (I know a lot of very smart moms who chose that). Wait with the babies until after the career goals are met (say, age 38)? Another solution. Put a 6 week old baby in a nursery? A solution. I don’t think anybody can honestly say that there is a perfect solution for mothers. Taking a baby to work or university is also not a perfect solution, but in my opinion this solution should be accepted (not to say, encouraged) by society as a legitimate one.

Normally, a baby (especially a young, nursing baby that is held) can be very quiet for a rather long time; babies are much better behaved than the average student. Don’t worry: no one wants to hush a screaming baby and ruin everybody’s day while not being able to understand anything themselves.

If anybody feels that an occasional gurgle or murmur (or a completely silent breastfeeding mom) is disruptive to learning, perhaps they should carefuly check if that is really what is bothering them. I never heard of anyone with an annoying cough, or someone who wears short sleeves or shorter pants, or has an obnoxious attitude, or somebody who asks the instructor not to use Greek letters, etc., being asked not to enter classes because it is disruptive. Universities are about people, right? It’s nice that there’s all kinds of people of various kinds and sizes, enjoy it!


Interesting figure

I found an interesting figure in the March 2014 issue of the EMS newsletter, from the article by H. Mihaljevic´ -Brandt and O. Teschke, Journal Profiles and Beyond: What Makes a Mathematics Journal “General”?

See the right column on page 56 in this link. (God help me, I have no idea how to embed that figure in the post. Anyway, maybe it is illegal, so I don’t bother learning.) One can see the “subject bias” of Acta, Annals and Inventiones.

On the left column, there is a graph showing the percentage of papers devoted to different MSC subjects in what the authors call “generalist” math journals (note carefully that these journals are only a small subclass of all journals, chosen by a method that is loosely described in the article). On the right column there is the interesting figure, showing the subject bias. If I understand correctly, the Y-axis is the MSC number and the X-axis represents the corresponding deviation from the average percentage given in the left figure. So, for example, Operator Theory (MSC 47) is the subject of about 5 percent of the papers in a generalist journal, but in the Annals there is a deviation of minus 4 from the average, so if I understand this figure correctly, that means that about 1 percent of papers in the Annals are classified under MSC 47. Another example: Algebraic Geometry (MSC 14), takes up a significant portion of Inventiones papers, much more than it does in an average “generalist” journal.

(I am not making any claims, this could mean a lot of things and it could mean nothing. But it is definitely interesting to note.)

Another interesting point is that the authors say that of the above three super-journals, Acta “is closest to the average distribution, though it is sometimes considered as a journal with a focus on analysis”. That’s interesting in several ways.


Measure theory is a must

[This post started out as an introduction to a post I was planning to write on convergence theorems for the Riemann integral. The introduction kind of got out hand, so I decided to post it separately. Since I have to get back to my real work, I will postpone writing that post on convergence theorems for the Riemann integral for another time, probably during the Passover break (but in any case before we need them for the course I am teaching this term, Calculus 2)].


Mathematicians love to argue about subjective opinions. One of the most tiresome and depressing subjects of debate is “What should an undergraduate math major curriculum contain?”


Read the rest of this entry »