Advanced Analysis, Notes 17: Hilbert function spaces (Pick’s interpolation theorem)

In this final lecture we will give a proof of Pick’s interpolation theorem that is based on operator theory.

Theorem 1 (Pick’s interpolation theorem): Let z_1, \ldots, z_n \in D, and w_1, \ldots, w_n \in \mathbb{C} be given. There exists a function f \in H^\infty(D) satisfying \|f\|_\infty \leq 1 and 

f(z_i) = w_i \,\, \,\, i=1, \ldots, n

if and only if the following matrix inequality holds:

\big(\frac{1-w_i \overline{w_j}}{1 - z_i \overline{z_j}} \big)_{i,j=1}^n \geq 0 .

Note that the matrix element \frac{1-w_i\overline{w_j}}{1-z_i\overline{z_j}} appearing in the theorem is equal to (1-w_i \overline{w_j})k(z_i,z_j), where k(z,w) = \frac{1}{1-z \overline{w}} is the reproducing kernel for the Hardy space H^2 (this kernel is called the Szego kernel). Given z_1, \ldots, z_n, w_1, \ldots, w_n, the matrix

\big((1-w_i \overline{w_j})k(z_i,z_j)\big)_{i,j=1}^n

is called the Pick matrix, and it plays a central role in various interpolation problems on various spaces.

I learned this material from Agler and McCarthy’s monograph [AM], so the following is my adaptation of that source.

(A very interesting article by John McCarthy on Pick’s theorem can be found here).

Read the rest of this entry »