Noncommutative Analysis

Category: Noncommutative function theory

Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball

Guy Salomon, Eli Shamovich and I recently uploaded to the arxiv our paper “Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball“. This paper blends in with the current growing interest in noncommutative functions theory, continues and unifies several strands of my past research.

A couple of years ago, after being inspired by lectures of Agler, Ball, McCarthy and  Vinnikov on the subject, and after years of being influenced by Paul Muhly and Baruch Solel’s work, I realized that many of my different research projects (subproduct systems, the isomorphism problem, space of Dirichlet series with the complete Pick property, operator algebras associated with monomial ideals) are connected by the unifying theme of bounded analytic nc functions on subvarieties of the nc ball. “Realized” is a strong word, because many of my original ideas on this turned out to be false, and others I still don’t know how to prove. Anyway, it took me a couple of years and a lot of help, and here is this paper.

In short, we study algebras of bounded analytic functions on subvarieties of the the noncommutative (nc) unit ball :

\mathfrak{B}_d = \{(X_1, \ldots, X_d) tuples of n \times n matrices,  \sum X_i X_i \leq I\}

as well as bounded analytic functions that extend continuously to the “boundary”. We show that these algebras are multiplier algebras of appropriate nc reproducing kernel Hilbert spaces, and are completely isometrically isomorphic to the quotient of H^\infty(\mathfrak{B}_d) (the bounded nc analytic functions in the ball) by the ideal of nc functions vanishing on the variety. We classify these algebras in terms of the varieties, similar to classification results in the commutative case. We also identify previously studied algebras (such as multiplier algebras of complete Pick spaces and tensor algebras of subproduct systems) as algebras of bounded analytic functions on nc varieties. See the introduction for more.

We certainly plan to continue this line of research in the near future – in particular, the passage to other domains (beyond the ball), and the study of algebraic/bounded isomorphisms.

Souvenirs from Amsterdam

(I am writing a post on hot trends in mathematics in the midst of war, completely ignoring it. This seems like the wrong thing to do, but my urge to write has overcome me. To any reader of this blog: I wish you a peaceful night, wherever you are).

Last week I returned from the yearly “International Workshop on Operator Theory and Applications”, IWOTA 2014 for short (see the previous post for the topic of my own talk, or this link for the slides).

This conference was very broad (and IWOTA always is). One nice thing about broad conferences is that you are able sometimes to identify a growing trend. In this talk I got particularly excited by a series of talks on “noncommutative function theory” or “free analysis”. There was a special session dedicated to this topic, but I was mostly inspired by a semi-plenary talk by Jim Agler, and also by two interesting talks by Joe Ball and Spela Spenko. I also attended nice talks related to this subject by Victor Vinnikov, Dmitry Kalyuhzni-Verbovetskyi, Baruch Solel, Igor Klep and Bill Helton. This topic has attracted the attention of many operator theorists, for its applications as well as for its inherent beauty, and seems to be accelerating in the last several years; I will only try to give a taste of some neat things that are going on, by telling you about Agler’s talk. What I will not be able to do is to convey Agler’s intense and unique mathematical charisma.

Here is the program of the conference, so you can check out other things that were going on there.

Read the rest of this entry »

Souvenirs from the Black Forest

Last week I attended a workshop titled “Hilbert modules and complex geometry” in MFO (Oberwolfach). In this post I wish to tell about some interesting things that I have learned. There were many great talks to choose from. Below is a sample, in short form, with links.

Read the rest of this entry »