Noncommutative Analysis

Category: Operator theory

The preface to “A First Course in Functional Analysis”

I am not yet done being excited about my new book, A First Course in Functional Analysis. I will use my blog to advertise my book, one last time. This post is for all the people who might wonder: “why did you think that anybody needs a new book on functional analysis?” Good question! The answer is contained in the preface to the book, which is pasted below the fold.

Read the rest of this entry »

Introduction to von Neumann algebras, Lecture 3 (some more generalities, projection constructions, commutative von Neumann algebras)

In this lecture we will describe some projection construction in von Neumann algebras, and we will classify commutative von Neumann algebras.

So far (the first two lectures and in this one), the references I used for preparing these notes are Conway (A Course in Operator Theory) Davidson (C*-algebras by Example), Kadison-Ringrose (Fundamentals of the Theory of Operator Algebras, Vol .I), and the notes on Sorin Popa’s homepage. But since I sometimes insist on putting the pieces together in a different order, the reader should be on the look out for mistakes.

Read the rest of this entry »

Introduction to von Neumann algebras, Lecture 2 (Definitions, the double commutant theorem, etc.)

In this second lecture we start a systematic study of von Neumann algebras.

Read the rest of this entry »

Introduction to von Neumann algebras, addendum to Lecture 1 (solution of Exercise B: the norm of a selfadjoint operator)

One of the challenges I had in preparing this course, was to find a quick route to the modern theory that is different from the standard modern route, in order to save time and be able to reach significant results and examples in the limited time of a one semester course. A main issue was to avoid the (beautiful, beautiful, beautiful) Gelfand theory of commutative Banach and C*-algebras, and base everything on the spectral theorem for a single selfadjoint operator (which is significantly simpler than the one for normal operators). In the previous lecture, I stated Exercise B, which gave some important properties of the spectrum of a selfadjoint operator. Since my whole treatment is based on this, I felt that for completeness I should give the details.

Spoiler alert: If you are a student in the course and you plan to submit the solution of this exercise, then you shouldn’t read the rest of this post.

Read the rest of this entry »

A First Course in Functional Analysis (my book)

She’hechiyanu Ve’kiyemanu!

My book, A First Course in Functional Analysis, to be published with Chapman and Hall/CRC, will soon be out. There is already a cover, check it out on the CRC Press website.

This book is written to accompany an undergraduate course in functional analysis, where the course I had in mind is precisely the course that we give here at the Technion, with the same constraints. Constraint number 1: a course in measure theory is not mandatory in our undergraduate program. So how can one seriously teach functional analysis with significant applications? Well, one can, and I hope that this book proves that one can. I already wrote before, measure theory is not a must. Of course anyone going for a graduate degree in math should study measure theory (and get an A), but I’d like the students to be able to study functional analysis before that (so that they can do a masters degree in operator theory with me).

I believe that the readers will find many other original organizational contributions to the presentation of functional analysis in this book, but I leave them for you to discover. Instructors can request an e-copy for inspection (in the link to the publisher website above), friends and direct students can get a copy from me, and I hope that the rest of the world will recommend this book to their library (or wait for the libgen version).

Dilations, inclusions of matrix convex sets, and completely positive maps

In part to help myself to prepare for my talk in the upcoming IWOTA, and in part to help myself prepare for getting back to doing research on this subject now that the semester is over, I am going to write a little exposition on my joint paper with Davidson, Dor-On and Solel, Dilations, inclusions of matrix convex sets, and completely positive maps. Here are the slides of my talk.

The research on this paper began as part of a project on the interpolation problem for unital completely positive maps*, but while thinking on the problem we were led to other problems as well. Our work was heavily influenced by works of Helton, Klep, McCullough and Schweighofer (some which I wrote about the the second section of this previous post), but goes beyond. I will try to present our work by a narrative that is somewhat different from the way the story is told in our paper. In my upcoming talk I will concentrate on one aspect that I think is most suitable for a broad audience. One of my coauthors, Adam Dor-On, will give a complimentary talk dealing with some more “operator-algebraic” aspects of our work in the Multivariable Operator Theory special session.

[*The interpolation problem for unital completely positive maps is the problem of finding conditions for the existence of a unital completely positive (UCP) map that sends a given set of operators A_1, \ldots, A_d to another given set B_1, \ldots, B_d. See Section 3 below.]

Read the rest of this entry »

Preprint update (Stable division and essential normality…)

Shibananda Biswas and I recently uploaded to the arxiv a new version of our paper “Stable division and essential normality: the non-homogeneous and quasi-homogeneous cases“. This is the paper I announced in this previous post, but we had to make some significant changes (thanks to a very good referee) so I think I have to re announce the paper.

I’ve sometimes been part of conversations where we mathematicians share with each other stories of how some paper we wrote was wrongfully (and in some cases, ridiculously) rejected; and then I’ve also been in conversations where we share stories of how we, as referees, recently had to reject some wrong (or ridiculous) paper. But I never had the occasion to take part in a conversation in which authors discuss papers they wrote that have been rightfully rejected. Well, thanks to the fact that I sometimes work on problems related to Arveson’s essential normality conjecture (which is notorious for having caused some embarrassment to betters-than-I), and also because I have become a little too arrogant and not sufficiently careful with my papers, I have recently become the author of a rightfully rejected paper. It is a good paper on a hard problem, I am not saying it is not, and it is (now (hopefully!)) correct, but it was rejected for a good reason. I think it is a story worth telling. Before I tell the story I have to say that both the referee and my collaborator were professional and great, and this whole blunder is probably my fault.

So Shibananda Biswas and I submitted this paper Stable division and essential normality: the non-homogeneous and quasi-homogeneous cases for publication. The referee sent back a report with several good comments, two of which turned out to be serious. The two serious comments concerned what appeared as Theorem 2.4 in the first version of the paper (and it appears as the corrected Theorem 2.4 in the current version, too). The first serious  issue was that in the proof of the main theorem we mixed up between t and t+1, and this, naturally, causes trouble (well, I am simplifying. Really we mixed between two Hilbert space norms, parametrised by t and t+1). The second issue (which did not seem to be a serious one at first) was that at some point of the proof we claimed that a particular linear operator is bounded since it is known to be bounded on a finite co-dimensional subspace; the referee asked for clarifications regarding this step.

The first issue was serious, but we managed to fix the original proof, roughly by changing t+1 back to t. There was a price to pay in that the result was slightly weaker, but not in a way that affected the rest of the paper. Happily, we also found a better proof of the result we wanted to prove in the first place, and this appears as Theorem 2.3 in the new and corrected version of the paper.

The second issue did not seem like a big deal. Actually, in the referee’s report this was just one comment among many, some of which were typos and minor things like that, so we did not really give it much attention. A linear operator is bounded on a finite co-dimensional subspace, so it is bounded on the whole space, I don’t have to explain that!

We sent the revision back, and after a while the referee replied that we took care of most things, but we still did not explain the part about the operator-being-bounded-because-it-is-bounded-on-a-finite-co-dimensional-space. The referee suggested that we either remove that part (since we already had the new proof), or we explain it. The referee added, that in either case he suggests to accept the paper.

Well, we could have just removed that part indeed and had the paper accepted, but we are not in the business of getting papers accepted for publication, we are in the business of proving theorems, and we believed that our original proof was interesting in itself since it used some interesting new techniques. We did not want to give up on that proof.

My collaborator wrote a revision with a very careful, detailed and rigorous explanation of how we get boundedness in our particular case, but I was getting angry and I made the big mistake of thinking that I am smarter than the referee. I thought to myself: this is general nonsense! It always holds. So I insisted on sending back a revision in which this step is explained by referring to a general principle that says that an operator which is bounded on a finite co-dimensional subspace is bounded.


That’s not quite exactly precisely true. Well, it depends what you mean by “bounded on a finite co-dimensional subspace”. If you mean that it is bounded on a closed subspace which has a finite dimensional algebraic complement then it is true, but one can think of interpretations of “finite co-dimensional” that make this is wrong: for example, consider an unbounded linear functional: it is bounded on its kernel, which is finite co-dimensional in some sense, but it is not bounded.

The referee, in their third letter, pointed this out, and at this point the editor decided that three strikes and we are out. I think that was a good call. A slap in the face and a lesson learned. I only feel bad for my collaborator, since the revision he prepared originally was OK.

Anyway, in the situation studied in our paper, the linear subspace on which the operator is bounded is a finite co-dimensional ideal in the ring of polynomials. It’s closure has zero intersection with the finite dimensional complement (the proof of this is not very hard, but is indeed non-trivial and makes use of the nature of the spaces in question), and everything is all right.  Having learned our lessons, we explain everything in detail in the current version. I hope that carefully enough.

I think that what caused us most trouble was that I did not understand what the referee did not understand. I assumed (very incorrectly, and perhaps arrogantly) that they did not understand a basic principle of functional analysis; it turned out that the referee did not understand why we are in a situation where we can apply this principle, and with hindsight this was worth explaining in more detail.

One of the most outrageous open problems in operator/matrix theory is solved!

I want to report on a very exciting development in operator/matrix theory: the von Neumann inequality for 3 \times 3 matrices has been shown to hold true. I learned this from a recent paper (with the irresistible title) “The von Neumann inequality for 3 \times 3 matrices“, posted on the arxiv by Greg Knese. In this paper, Knese explains how the solution of this outstanding open problem follows from results in a paper by Lukasz Kosinski, “The three point Nevanlinna-Pick problem in the polydisc” that appeared on the arxiv about a half a year ago. Beautifully, and not surprisingly, the solution of this operator/matrix theoretic problem follows from deep new facts in complex function theory in several variables.

To recall the problem, let us denote \|A\| the operator norm of a matrix A, and for every polynomial p in d variables we denote by \|p\|_\infty the supremum norm

\|p\|_\infty = \sup_{|z_i|\leq 1} |p(z_1, \ldots, z_d)|.

A matrix A is said to be contractive if \|A\| \leq 1.

We say that d commuting contractions A_1, \ldots, A_d satisfy von Neumann’s inequality if 

(*)  \|p(A_1,\ldots, A_d)\| \leq \|p\|_\infty.

It was known since the 1960s that (*) holds when d \leq 2. Moreover, it was known that for d \geq 3, there are counter examples, consisting of d contractive 4 \times 4 matrices that do not satisfy von Neumann’s inequality. On the other hand, it was known that (*) holds for any d if the matrices A_1, \ldots, A_d are of size 2 \times 2. Thus, the only missing piece of information was whether or not von Neumann’s inequality holds or not for three or more contractive 3 \times 3 matrices. To stress the point: it was not known whether or not von Neumann’s inequality holds for three three-by-three matrices. The problem in this form has been open for 15 years  – but the problem is much older: in 1974 Kaiser and Varopoulos came up with a 5 \times 5 counter-example, and since then both the 3 \times 3  and the 4 \times 4 cases were open until Holbrook in 2001 found a 4 \times 4 counter example. You have to agree that this is outrageous, perhaps even ridiculous, I mean, three 3 \times 3 matrices, come on!

In Knese’s paper this story and the positive solution to the problem is explained very clearly and succinctly, and is recommended reading for any operator theorist. One has to take on faith the paper of Kosinski which, as Knese stresses, is where the major new technical advance has been made (though one should not over-stress this fact, because tying things together, the way Knese has done, requires a deep understanding of this problem and of the various ingredients). To understand Kosinki’s paper would require a greater investment of time, but it appears that the paper has already been accepted for publication, so I am quite confident and happy to see this problem go down.

Stable division and essential normality: the non-homogeneous and quasi homogeneous cases

Update (January 29, 2016): paper revised, see this post


Several months ago Shibananda Biswas (henceforth: Shibu) and I posted to the arxiv our paper “Stable division and essential normality: the non-homogeneous and quasi homogeneous cases“. I was a little too busy to write about it at the time, but now that it is summer it seems like a good time to do it, since I am too busy, and I need a break from work. Nothing like going back and thinking about papers you have already written when you are overwhelmed by your current project.

Anyway, the main problem the paper I wrote with Shibu deals with, is the essential normality of submodules of various Hilbert modules (closely related to the Drury-Arveson module that I wrote about in the past: one, two, three, or if you are really asking for trouble, look at this survey). This paper is highly technical, and I want to try to explain it in a non-technical fashion. Read the rest of this entry »

Souvenirs from the Rocky Mountains

I recently returned from the Workshop on Multivariate Operator Theory at Banff International Research Station (BIRS). BIRS is like the MFO (Oberwolfach): a mathematical resort located in the middle of a beautiful landscape, to where mathematicians are invited to attend/give talks, collaborate, interact, catch up with old friends, make new friends, have fun hike, etc.

As usual I am going over the conference material the week after looking for the most interesting things to write about. This time there were two talks that stood out from my perspective, the one by Richard Rochberg (which was interesting to me because it is on a problem that I have been thinking a lot about), and the one by Igor Klep (which was fascinating because it is about a subject I know little about but wish to learn). There were some other very nice talks, but part of the fun is choosing the best; and one can’t go home and start working on all the new ideas one sees.

A very cool feature of BIRS is that now they automatically shoot the talks and put the videos online (in fact the talks are streamed in real time! If you follow this link at the time of any talk you will see the talk; if you follow the link at any other time it is even better, because there is a webcam outside showing you the beautiful surroundings.

I did not give a talk in the workshop, but I prepared one – here are the slides on the workshop website (best to download and view with some viewer so that the talk unfolds as it should). I also wrote a nice “take home” that would be probably (hopefully) what most people would have taken home from my talk if they heard it, if I had given it. The talk would have been about my recent work with Evgenios Kakariadis on operator algebras associated with monomial ideals (some aspects of which I discussed in a previous post), and here is the succinct Summary (which concentrates on other aspects).  Read the rest of this entry »