### New paper: Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball

Danny Ofek, Satish Pandey and I just uploaded our new paper “Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball” to the arxiv. This papers fits into my ongoing work on the isomorphism problem for complete Pick algebras, but it raises a very fundamental question that I think is worth highlighting.

As in other subjects of mathematics, when working on Hilbert function spaces, one sometimes asks very basic questions, such as: *when are two Hilbert function spaces the same?* *what is the “true” set on which the functions in a RKHS are defined?* (see Section 2 in this paper) or *what information is encoded in a space or its multiplier algebra?* (see the “road map” here). The underlying questions behind our new paper are *when are two Hilbert function spaces “almost” the same *and *what happens if you change a Hilbert function space “just a little bit”?* If these sound like interesting questions, then I suggest you take a look at the paper’s introduction.

Here is the abstract:

In this paper we study the relationships between a reproducing kernel Hilbert space, its multiplier algebra, and the geometry of the point set on which they live. We introduce a variant of the Banach-Mazur distance suited for measuring the distance between reproducing kernel Hilbert spaces, that quantifies how far two spaces are from being isometrically isomorphic as reproducing kernel Hilbert spaces. We introduce an analogous distance for multiplier algebras, that quantifies how far two algebras are from being completely isometrically isomorphic. We show that, in the setting of finite dimensional quotients of the Drury-Arveson space, two spaces are “close” to one another if and only if their multiplier algebras are “close”, and that this happens if and only if the underlying point-sets are “almost congruent”, meaning that one of the sets is very close to an image of the other under a biholomorphic automorphism of the unit ball. These equivalences are obtained as corollaries of quantitative estimates that we prove.