Noncommutative Analysis

Category: Arveson

Essential normality, essential norms and hyper rigidity

Matt Kennedy and I recently posted on the arxiv a our paper “Essential normality, essential norms and hyper rigidity“. This paper treats Arveson’s conjecture on essential normality (see the first open problem in this previous post). From the abstract:

Let S = (S_1, \ldots, S_d) denote the compression of the d-shift to the complement of a homogeneous ideal I of \mathbb{C}[z_1, \ldots, z_d]. Arveson conjectured that S is essentially normal. In this paper, we establish new results supporting this conjecture, and connect the notion of essential normality to the theory of the C*-envelope and the noncommutative Choquet boundary.

Previous works on the conjecture verified it for certain classes of ideals, for example ideals generated by monomials, principal ideals, or ideals of “low dimension”. In this paper we find results that hold for all ideals, but – alas! – these are only partial results.

Denote by Z = (Z_1, \ldots, Z_d) the image of S in the Calkin algebra (here as in the above paragraph, S is the compression of the d-shift to the complement of an ideal I in H^2_d). Another way of stating Arveson’s conjecture is that the C*-algebra generated by Z is commutative. This would have implied that the norm closed (non-selfadjoint) algebra generated by Z is equal to the sup-norm closure of polynomials on the zero variety of the ideal I. One of our main results is that we are able to show that the non-selfadjoint algebra is indeed as the conjecture predicts, and this gives some evidence for the conjecture. This is also enough to obtain a von Neumann inequality on subvarieties of the ball, what would have been a consequence of the conjecture being true.

Another main objective is to connect between essential normality and the noncommutative Choquet boundary (see this and this previous posts). A main result here is  we have is that the tuple S is essentially normal if and only if it is hyperrigid  (meaning in particular that all irreducible representations of C^*(S) are boundary representations).

Arveson memorial article

Palle Jorgensen and Daniel Markiewicz have put together a beautiful tribute to the late Bill Arveson, with contributions from about a dozen mathematicians as well as a more personal piece by Lee Ann Kaskutas. This memorial article might appear later elsewhere in shorter form, but I think it would be interesting for many people to see the full tribute, with all the various points of view and pieces of life that it contains. I wrote a post dedicated to Arveson’s memory about half a year ago, where I put links to two recent surveys (1 by Davidson and and 2 by Izumi), and in about a month there will be a big conference in Berkeley dedicated to Arveson’s legacy; still I feel that this tribute really fills a hole, and conveys in broader, fuller way what a remarkable mathematician he was, and how impacted so many so strongly. Please share the link with people who might be interested.

Forty five years later, a major open problem in operator algebras is solved

A couple of days ago, Ken Davidson and Matt Kennedy posted a preprint on the arxiv, “The Choquet boundary of an operator system“. In this paper they solve a major open problem in operator algebras, showing that every operator system has sufficiently many boundary representations. 

In 1969, William Arveson published the seminal paper, [“Subalgebras of C*-algebras”, Acta Math. 123, 1969], which is one of the cornerstones, (if not the cornerstone) of the theory of operator spaces and nonself-adjoint operator algebras. In that paper, among other things, Arveson introduced and put to good use the notion of a boundary representation. I wrote on “Subalgebras of C*-algebras” in a previous post dedicated to Arveson, and for some background material the reader is invited to look into that old post. I did not, however, write much about boundary representations (because I was emphasizing his contributions rather what he has left open). Below I wish to explain what are boundary representations, what does it mean that there are sufficiently many of these, and where Davidson and Kennedy’s new results fits in the chain of results leading to the solution of the problem. The paper itself is accessible to anyone who understands the problem, and the main ideas are clearly presented in its introduction.

Read the rest of this entry »

William Arveson

William B. Arveson was born in 1934 and died last year on November 15, 2011. He was my mathematical hero; his written mathematics has influenced me more than anybody else’s. Of course, he has been much more than just my hero, his work has had deep and wide influence on the entire operator theory and operator algebras communities. Let me quickly give an example that everyone can appreciate: Arveson proved what may be considered as the “Hahn-Banach Theorem” appropriate for operator algebras. He did much more than that, and I will expand below on some of his early contributions, but I want to say something before that on what he was to me.

When I was a PhD student I worked in noncommutative dynamics. Briefly, this is the study of actions of (one-parameter) semigroups of *-endomorphisms on von Neumann algebras (in short E-semigroups). The definitive book on this subject is Arveson’s monograph “Noncommutative Dynamics and E-Semigroups”. So, naturally, I would carry this book around with me, and I would read it forwards and backwards. The wonderful thing about this book was that it made me feel as if all my dreams have come true! I mean my dreams about mathematics: as a graduate student you dream of working on something grand, something important, something beautiful, something elegant, brilliant and deep. You want your problem to be a focal point where different ideas, different fields, different techniques, in short, all things, meet.

When reading Arveson there was no doubt in my heart that, e.g., the problem classifying E-semigroups of type I was a grand problem. And I was blown away by the fact that the solution was so beautiful. He introduced product systems with such elegance and completeness that one would think that this subject has been studied for the last 50 years. These product systems were measurable bundles of operator spaces – which turn out to be Hilbert spaces! – that have a group like structure with respect to tensor multiplication. And they turn out to be complete invariants of E-semigroups on B(H). The theory set down used ideas and techniques from Hilbert space theory, operator space theory, C*-algebras, group representation theory, measure theory, functional equations, and many new ideas – what more could you ask for? Well, you could ask that the new theory also contribute to the solution of the original problem.

It turned out that the introduction of product systems immensely advanced the understanding of E-semigroups, and in particular it led to the full classification of type I ones.

So Arveson became my hero because he has made my dreams come true. And more than once: when reading another book by him, or one of his great papers, I always had a very strong feeling: this is what I want to do. And when I felt that I gave a certain problem all I thought I had in me, and decided to move on to a new problem, it happened that he was waiting for me there too.

I wish to bring here below a little piece that I wrote after he passed away, which explains from my point of view what was one of his greatest ideas.

For a (by far) more authoritative and complete review of Arveson’s contributions, see the two recent surveys by Davidson (link) and Izumi (link).

Read the rest of this entry »