Noncommutative Analysis

Category: Expository

My talk at BIRS on “Noncommutative convexity, a la Davidson and Kennedy”

Update August 5: here is the link to the video recording of the talk: link.

I was invited to speak in the BIRS workshop Multivariable Operator Theory and Function Spaces in Several Variables. Surprise: the organizers asked each of the invited speakers (with the exception of some early career researchers, I think) to speak on somebody else’s work. I think that this is a very nice idea for two reasons.

First, it is very healthy to encourage researchers to open their eyes and look around, instead of concentrating always on their own work – either racing for another publication or “selling” it. At the very least being asked to speak about somebody else’s work, it is guaranteed that I will learn something new in the workshop!

The second reason why I think that this is a very welcome idea is maybe a bit deeper. Every mathematician works to solve their favorite problems or develop their theories, but every once in a while it is worthwhile to stop and think: what do we make out of all this? What are the results/theories/points of view that we would like to carry forward with us? The tree can’t grow in all directions with no checks – we need to prune it. We need to bridge the gap between the never stopping flow of papers and results, on one side, and the textbooks of the future, on the other side.

With these ambitious thoughts in mind, I chose to speak about Davidson and Kennedy’s paper “Noncommutative Choquet theory” in order to force myself to digest and internalize what looked to me to be an important paper from the moment it came out, and with this I hoped to stop a moment and rearrange my mental grip on noncommutative function theory and noncommutative convexity.

The theory developed by Davidson and Kennedy and its precursors were inspired to a very large extent by classical Choquet theory. It therefore seems that to understand it properly, as well as to understand the reasoning behind some of the definitions and approaches, one needs to be familiar with this theory. So one possible natural way to start to describe Davidson and Kennedy’s theory is by recalling the classical theory that it generalizes.

But I didn’t want to explain it in this way, because that is the way that Davidson and Kennedy’s exposition (both in the papers and in some talks that I saw) goes. I wanted to start with the noncommutative point of view from the outset. I did use the classical (i.e. commutative case) for a tiny bit of motivation but in a somewhat different way, which rests on stuff everybody knows. So, I did a little expository experiment, and if you think it blew up then everybody can simply go and read the original paper.

Here are my “slides”:

The conference webpage will have video recordings of all talks at some point.

A survey (another one!) on dilation theory

I recently uploaded to the arxiv my new survey “Dilation theory: a guided tour“. I am pretty happy and proud of the result! Right now I feel like it is the best survey ever written (honest, that’s how I feel, I know that its an illusion), but experience tells me that two months from now I might be a little embarrassed (like: how could I be so vain to think that I could pull of a survey on this gigantic topic?).

(Well, these are the usual highs and lows of being a mathematician, but since this is a survey paper and not a research paper, I feel comfortable enough to share these feelings).

This survey was submitted (and will hopefully appear in) to the Proceedings of the International Workshop on Operator Theory and its Applications (IWOTA) 2019, Portugal. It is an expanded version of the semi-plenary talk that I gave in that conference. I used a preliminary version of this survey as lecture notes for the mini-course that I gave at the recent workshop “Noncommutative Geometry and its Applications” at NISER Bhubaneswar.

I hope somebody finds it useful or entertaining 🙂

The disc trick (and some other cute moves)

This post is about a chain of little tricks that I discovered with collaborators and used in several papers. It is just a collection of simple moves that lets you deduce the existence of a zero preserving map of a certain class between two gauge invariant spaces, given the existence of a map from that class (things will be very clear soon, I hope). These tricks were later used by some other people, who applied it in different settings.

I am writing this post as notes for my upcoming Pizza & Beer seminar talk. The section at the end of the notes contains references and links to papers where this was used.

Read the rest of this entry »

The complex matrix cube problem – new results from summer projects

In this post I will summarize the results obtained by my group in the “Summer Projects Week” that took place two weeks ago at the Technion. As in last time (see here for a summary of last year’s project) the title of the project I suggested was “Numerical Explorations of Open Problems from Operator Theory”. This time, I was lucky to have Malte Gerhold and Satish Pandey, my postdocs, volunteer to help me with the mentoring. The students who chose our project were Matan Gibson and Ofer Israelov, and they did fantastic work.

Read the rest of this entry »

The perfect Nullstellensatz just got more perfect

After giving a talk about the perfect Nullstellensatz (the commutative free Nullstellensatz) at the Technion Math department’s pizza and beer seminar, I had a revelation: I think it holds over other fields as well, not just over the complex numbers! (And in particular, contrary to what I thought before, it holds over the reals. It seems to hold over other fields as well). 

To explain, I will need some notation. 

Let k be a field. We write A = k[z_, \ldots, z_d] – the algebra of all polynomials in d (commuting) variables over the field k

Read the rest of this entry »