Noncommutative Analysis

Category: d shift space

Great new set of lecture notes on the Drury-Arveson space

A few days ago Michael Hartz uploaded a very nice set of lectures notes on the Drury-Arveson space, called “An Invitation to the Drury-Arveson Space“. These notes are an expanded written version of the mini-course that he gave in the Focus Program on Analytic Function Spaces, which I blogged about a few months ago. I highly recommend these notes, they seem to me the best introduction to the subject (yes, even better than my own survey which is almost eight years old, and definitely better than my old series of blog posts, which I won’t even link to). If somebody wants to start working in the Drury-Arveson today, this seems like the right place to start.

von Neumann’s inequality for row contractive matrix tuples

Michael Hartz, Stefan Richter and I recently uploaded our paper von Neumann’s inequality for row contractive matrix tuples to the arxiv.

The main result is the following.

We prove that for all d,n\in \mathbb{N}, there exists a constant C_{d,n} such that for every row contraction T consisting of d commuting n \times n matrices and every polynomial p, the following inequality holds:

 \|p(T)\| \le C_{d,n} \sup_{z \in \mathbb{B}_d} |p(z)| .

We then apply this result and the considerations involved in the proof to several open problems from the literature. I won’t go into that because I think that the abstract and introduction do a good job of explaining what we do in the paper. In this post I will write about how this collaboration with Michael and Stefan started, and give some heuristic explanation why our result is not trivial.

Read the rest of this entry »

Topics in Operator Theory, Lecture 9: the boundary theorem

In this post, we come back to boundary representations and the C*-envelope, prove an important theorem, and see some examples. It is interesting to note that the theory has interesting consequences even for operators on finite dimensional spaces. Here is a link to a very interesting paper by Farenick giving an exposition of Arveson’s boundary theorem in the setting of operators on finite dimensional spaces.

Read the rest of this entry »

Spaces of Dirichlet series with the complete Pick property (or: the Drury-Arveson space in a new disguise)

John McCarthy and I have recently uploaded a new version of our paper “Spaces of Dirichlet series with the complete Pick property” to the arxiv. I would like to advertise the central discovery of this paper here.

Recall that the Drury-Arveson space H^2_d is the reproducing kernel Hilbert space on the open unit ball of a d dimensional Hilbert space, with reproducing kernel

k(z,w) = \frac{1}{1 - \langle z, w \rangle}.

It has the remarkable universal property that every Hilbert function space with the complete Pick property is naturally isomorphic to the restriction of H^2_\infty to a subset of the unit ball (see Theorem 6 and its corollary in this post), and consequently, every complete Pick algebra is a quotient of the multiplier algebra \mathcal{M}_\infty = Mult(H^2_\infty). To the best of my knowledge, no other Hilbert function spaces with such a universal property have been studied.

John and I discovered another reproducing kernel Hilbert space that turns out to be “the same” as the Drury-Arveson space H^2_\infty. Since the space H^2_\infty as been so well studied, it interesting to discover a new incarnation. The really interesting part is that the space we discovered is a space of analytic functions on a half plane (that is, a space of functions in one complex variable), rather than a space of analytic functions in infinitely many variables on the unit ball of a Hilbert space.

To be precise, the spaces we consider are spaces of Dirichlet series \mathcal{H}, of the form

\mathcal{H} = \{f(s) = \sum_{n=1}^\infty \gamma_n n^{-s} : \sum |\gamma_n|^2 a_n^{-1} < \infty \}.

(Here a_n is a sequence of positive numbers). These are Hilbert function spaces on some half plane that have a kernel of the form k(s,u) = \sum a_n n^{-s-\bar u}.

We first answer the question which of these spaces \mathcal{H} have the complete Pick property. This problem has a simple solution (which has been anticipated by similar results on spaces on the disc): if we denote by g(s) = \sum a_n n^{-s} the “generating function” of the space, and if we write

\frac{1}{g(s)} = \sum c_n n^{-s},

then \mathcal{H} is a complete Pick space if and only if c_n \leq 0 for all n \geq 2.

After we know to tell when these spaces are complete Pick, it is natural to ask which complete Pick spaces arise like this? We do not give a complete answer, but our surprising discovery is that things can easily be cooked up so to obtain the Drury-Arveson space H^2_d, where d can be any cardinal number in \{1,2,\ldots, \infty\}. For example, \mathcal{H} turns out to be “the same” as H^2_\infty if the kernel k is given by

k(s,u) = \frac{P(2)}{P(2) - P(2+s+\bar u)},

where P(s) = \sum_{p} p^{-s} is the prime zeta function (the sum is taken over all primes p).

 Now, I have been a little vague about what it means that \mathcal{H} is “the same” as H^2_\infty. In fact, this is a subtle question, and we devote a part of our paper what it means for two Hilbert function spaces to be the same — something that has puzzled us for a while.

What does this appearance of Drury-Arveson space as a space of Dirichlet series mean? Can we use this connection to learn something new on multivariable operator theory, or on Dirichlet series? How did the prime zeta function smuggle itself into this discussion? This requires further thought.

A corrigendum

Matt Kennedy and I have recently written a corrigendum to our paper “Essential normality, essential norms and hyperrigidity“. Here is a link to the corrigendum. Below I briefly explain the gap that this corrigendum fills.

A corrigendum is correction to an already published paper. It is clear why such a mechanism exists: we want the papers we read to represent true facts, so false claims, as well as invalid proofs or subtle gaps should be pointed out to the community. Now, many many papers (I don’t want to say “most”) have some kind of mistake in them, but not every mistake deserves a corrigendum – for example there are mistakes that the reader will easily spot and fix, or some where the reader may not spot the mistake, but the fix is simple enough.

There are no rules as to what kind of errors require a corrigendum. This depends, among other things, on the authors. Some mistakes are corrected by other papers. I believe that very quickly some sort of mechanism – say google scholar, or mathscinet – will be able to tell if the paper you are looking up is referenced by another paper pointing out a gap, so such a correction-in-another-paper may sometimes serve as legitimate replacement for a corrigendum, when the issue is a gap or minor mistake.

There is also a question of why publish a corrigendum at all, instead of updating the version of the paper on the arxiv (and this is exactly what the moderators of the arxiv told us at first when we tried to upload our corrigendum there. In the end we convinced them that the corrigendum can stand by itself). I think that once a paper is published, it could be confusing to have a version more advanced than the published version; it becomes very clumsy to cite papers like that.

The paper I am writing about (see this post to see what its about) had a very annoying gap: we justified a certain step by citing a particular proposition from a monograph. The annoying part is that the proposition we cite does not exactly deal with the situation we deal with in the paper, but our idea was that the same proof works in our situation. We did not want to spell out the details because we considered that to be very easy, and in any case it was not a new argument. Unfortunately, the same proof does work when working with homogeneous ideals (which was what first versions of the paper treated) but in fact it is not clear if they work for non-homogeneous ideals. The reason why this gap is so annoying, is that it leads the reader to waste time in a wild goose chase: first the reader goes and finds the monograph we cite, looks up the result (has to read also a few extra pages to see he understands the setting and notation in the monograph), realises this is is not the same situation, then tries to adapt the method but fails. A waste of time!

Another problem that we had in our paper is that one requires our ideals to be “sufficiently non-trivial”. If this were the only problem we would perhaps not bother writing a corrigendum just to introduce a non-triviality assumption, since any serious reader will see that we require this.

If I try to take a lesson from this, besides a general “be careful”, it is that it is dangerous to change the scope of the paper (for us – moving form homogeneous to non-homogeous ideals) in late stages of the preparation of the paper. Indeed we checked that all the arguments work for the non-homogneous case, but we missed the fact that an omitted argument did not work.

Our new corrigendum is detailed and explains the mathematical problem and its solutions well, anyone seriously interested in our paper should look at it. The bottom line is this as follows.

Our paper has two main results regarding quotients of the Drury-Arveson module by a polynomial ideal. The first is that the essential norm in the non selfadjoint algebra associated to a the quotient module, as well as the C*-envelope, are as the Arveson conjecture predicts (Section 3 in the paper) . The second is that essential normality is equivalent to hyperrigidity (Section 4 in the paper).

Under the assumption that all our ideals are sufficiently non-trivial (and some other standing assumptions stated in the paper), the situation is as follows.

The first result holds true as stated.

For the second result, we have that hyperrigidity implies essential normality (as we stated), but the implication “essential normality implies hyperrigidity” is obtained for homogeneous ideals only.